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The three-molecular cluster integrals for oxygen, nitrogen, and carbon 
tetrafluoride and the coefficients of  viscosity and self-diffusion for nitrogen 
and carbon dioxide are discussed on the basis of  the Kihara  convex-core 
potential  of  intermolecutar forces. For  the equil ibrium property,  the 
relative size of  the core is essential; for the t ranspor t  properties,  the non-  
spherical character  of  the molecule plays an impor tan t  role. 
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1. INTRODUCTION 

The equation of state of gases may be expressed in the form 

P/kT  = n + B(T)n 2 + C(T)n 3 + ... (1) 

Here P is the pressure, n is the number density of molecules, k is the Boltz- 
mann constant, and T is the absolute temperature. In this expression B(T), 
C(T),... are called the second, third .... varial coefficients. 

For nonpolar polyatomic molecules, Kihara m proposed an inter- 
molecular potential function 

U(p) = Uo[(po/O) ~2 - 2(00/0)61 (2) 

which is similar to that of Lennard-Jones but with the variable O set equal 
to the minimum distance between impenetrable molecular cores. The core 
may take any shape as long as it is a convex body. By properly choosing the 
cores, we can take into account the Sizes and shapes of  the molecules in a 
realistic way. 

A convex body is characterized by its three fundamental measures: the 
volume V, the surface area S, and the measure M, which is the mean curva- 
ture integrated over the surface of the convex body (e.g., M = 47ra for a 
sphere of radius a; M = ~l for a thin rod of length l). 

In terms of V, S, and M of the molecular core, the second virial coeffi- 
cient B(T) of a one-component gas is given in the form 

1 M 2  ] 

1 
+ V + - ~ M S  

This is calculated to be 

where 

+ 2Mo + 2fro 2] do 

B(T) = (27r/3)po3F3(z) + MOo2F2(z) 
+ [S + (47r)-lM2]poFl(z) + V + (47r)-lMS 

z = U o / k r  

s 
Fs(z) = 12 ~ P 2tZ (6t+s)ll2, 

t = 0  

s =  1,2, and3  

(3) 

If the core of a molecule is properly chosen, it is possible to determine the 
parameters U0 and O0 of the molecule by using the observed values ~2~ of 
the second virial coefficient. 

The purpose of  the present paper is to discuss the third virial coefficient 
C(T) and also coefficients of viscosity and self-diffusion of polyatomic gases 
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Table I. Fundamental  

Z, A ~ 

Measures of the Core and Potential  
Parameters 

m 

S, A 2 M, A po, A Uo/k, K 

N2 0 0 2.92 3.60 117 
02 0 0 3.23 3.20 151 
CO2 0 0 7.23 3.30 316 
CF4 (a) 1.29 8.54 12.73 2.63 352 
CF~ (b) 0.66 5.47 10.18 3.10 297 

i 

on the basis of the core potential (2). We treat N2, 02, CO2, and CF4, for 
which experimental data are reliable. 

Molecular cores are chosen as follows: 

N2: 0.85 x thin rod defined by N atoms. 
132: 0.85 x thin rod defined by O atoms. 
CO2: Thin rod defined by O atoms. 
CF4: (a) Tetrahedron defined by F atoms, (b) 0.8 x above-mentioned 

tetrahedron. 

Table I gives the fundamental measures of the cores and potential parameters 
determined from the second virial coefficients. 

The case where the convex core is reduced to a spherical core is partic- 
ularly simple. For this spherical-core potential, tables of functions giving the 
third virial coefficient have been given by Sherwood and Prausnitz, ~3~ and 
the effective cross sections for transport coefficients have been tabulated by 
Barker et al. ~4~ The problem to be solved in the present paper is how to apply 
these tables to nonspherical convex-core potentials. 

The second virial coefficient is positive for T < TB and negative for 
T < TB, where Ts is the so-called Boyle temperature. We define a characteris- 
tic volume b by 

dB  
dB = ( d ~ ) r = r B  b =  (T~-~)r=rB (4) 

In the present paper (in Figs. 1, 6, and 7), we use the following values: 

TB = 407 K, b = 67.5 A 3 for Ar 
TB = 323 K, b = 89.1 A 3 for N2 
TB = 517K,  b = 174 A 3 fo rCF~ 
T8 = 700 K, b = 122 A a for CO2 
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2. T H R E E - M O L E C U L E  C L U S T E R  I N T E G R A L  

I f  the molecular core is sufficiently small, i.e., M2/4~rp02 << 1, the ex- 
pression (3) reduces to 

B(T) = (27r/3)po3F3(z) + Mpo2F2(z) 

which depends only on M among  the three fundamental  measures V, S, 
and M. In other words, the expression for the second virial coefficient 
remains unaltered when a sphere with the same M is substituted for the 
molecular core. 

The situation is similar for the third virial coefficient C(T):  I f  the core is 
sufficiently small, it is of  the form 

C(T) = po 6 x (function of  z) + Mp05 x (function of  z) 

For  molecules with small cores, therefore, C(T) can be evaluated by re- 
placing the core with a sphere of  the same M. 

The cores o f  the molecules under  consideration are not  so small; e.g., 
M2/4r~po 2 = 0.38 for CO2. The spherical-core approximat ion is still effective, 
however, if an appropriate  sphere is adopted.  We choose the radius, denoted 
by a, of  the sphere in s u c h  a way that the second virial coefficient can be 
reproduced with the same Uo. The results are given in Table II.  Note  that  
the radius a is smaller than M[4rr and the new Oo is larger than the old p0. 

In this approximation,  we can evaluate C(T) by making use of  Sherwood 
and Prausnitz 's table mentioned in Section 1. 

The accuracy of  this type of  approximat ion has been confirmed by 
Kihara  and Miyoshi (5~ on the basis of  the square-well potential with convex 
cores, 

~ for  p < o  
U(p) = - E  < 0 for  ~ < p < 2a 

0 for  2a < p 

Table II. Spherical-Core Approximations 

Convex core Spherical core 

M/4~, A po, A a, A po, A 

N2 0.23 3.60 0.20 3.62 
02 0.26 3.20 0.23 3.22 
CO2 0.58 3.30 0.46 3.40 
CF4 (a) ! .01 2.63 0.90 2.70 
CF4 (b) 0.81 3.10 0.75 3.15 

I i 
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Here p is the distance between the molecular cores; E and a are potential 
parameters. 

The equation of state can also be expressed in the form of power series 

P/kr= ~ b~(r)z', n = ~ lb,(r)z' (5) 
l=l l=l 

in which the fugacity z plays the role of  a parameter. Here bl = l, and b2(T), 
ha(T) .... are called the two-molecule, three-molecule .... cluster integrals. 
Between the virial coefficients and the cluster integrals, the following re- 
lationships hold: 

b2 --- - B ,  b3 = 2B 2 - �89 .... (6) 

The/-molecule  cluster integral b~(T) has l - 1 zeros (l = 2, 3,...), each 
of which is located between two neighboring zeros of b~+ I(T). The least zero 
of bz(T) decreases as l increases, and the accumulation point of these least 
zeros coincides with the critical temperature. <6~ For this reason we use 
b3(T) instead of C(T) for comparison of theory with experiment. 

Figure 1 shows typical examples of the two- and three-molecule cluster 
integrals, which are obtained by the use of observed virial coefficients <2~ 
and the relation (6). The law of corresponding states does hold well for b2, 
but not for b3. This fact indicates that the intermolecular potential functions 
for Ar, N2, and CF4 are not similar, and that the three-molecule cluster 
integral is sensitive to the characteristics of  the intermolecular forces. 

For the three-molecule cluster integrals b3(T), effects of the nonadditivity 
of  the intermolecular potential cannot entirely be neglected. Figure 2 shows 

! 
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Fig. 1. Experimental values of b2/b and b3/b 2 as functions of T/TB. 
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Fig. 2. The three-body cluster integral b3(T) calculated for argon compared with observed 
values. The effects of potential nonadditivity are taken into account for the solid line, 
but not for the broken line. 

b 3 ( T ) ' f o r  argon calculated with and without the assumption of potential 
additivity. The calculation is based on the Lennard-Jones potential 

U(r)  = Uo[(rolr) lz - 2(r0/r) 61 (7) 

with r0 = 3.83 A and Uo/k = 119 K. It is shown that the potential non- 
additivity sl ightly  lowers the theoretical curve for ha(T). We take this fact 
into consideration for polyatomic molecules. 

Curves for ba(T) calculated in the above-mentioned spherical-core 
approximation are compared with observed values <2~ in Figs. 3-5 for 02, 
N2, and CF4, respectively. The potential additivity is assumed. 

The comparison for 02 is quite satisfactory since the effects of potential 
nonadditivity will lower slightly the theoretical curve. For N2, it should be 
noted that the effects of molecular quadrupole and the effects of potential 
nonadditivity partly cancel out. (The quadrupole of 02 is negligible.) Figure 
5 shows that the tetrahedron defined by four fluorine atoms is definitely too 
large as the molecular core of CF~. 
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Fig. 3. The cluster integral b3(T) calculated for oxygen compared with observed values. 
The effects of nonadditivity of the intermolecular potential are not included, which 
would lower the theoretical curve. 

3. K INETIC  PROPERTIES  OF GASES 

The C h a p m a n - E n s k o g  expressions (~) for t ransport  coefficients of  gases 
are given in terms of  the effective cross sections f2 (z,r~ defined by 

j k T  112 e x p ( - g * 2 ) g  *2'§ "(1 - cos z O) de dg "~ 

g* =- (m*/2kT)l~2g; l =  1 ,2 ;  r = l , l +  1 .... 

Here g is the relative velocity, 0 is the angle of  deflection in the orbit o f  
relative motion,  dc~ is the differential collision cross section, and m* is the 
reduced mass. The integrations of  fU 'r~ have been performed for the Lennard- 
Jones potential,  (8~ for  the spherical-core potential,  (4~ and for several other 
potentials. 

For  the convex-core potential (2) between nonsphdrical but nonpolar  
molecules, lower and upper  bounds o f  fU "T) can be evaluated as follows. 
Here " n o n p o l a r "  means also that  the center o f  mass o f  the molecule is 
located at the center of  geometrical symmetry  o f  the core. 

I f  we calculate an effective cross section by replacing the core with an 
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Fig. 4. Similar comparison as in Fig. 3, for nitrogen. 

inscribed sphere around the center of mass, leaving U0 and t)0 unaltered, 
then the result will give a lower bound of the cross section. This replacement 
corresponds to the assumption that the rotatory motions of the colliding 
molecules were perfectly free, as if the molecule had no moment of inertia 
with respect to the center of mass. For a molecule whose core is a thin rod, 
the inscribed sphere is a point; for such molecules the original potential (2) 
is reduced to the Lennard-Jones potential (7) with the same Uo and with ro 
equal to o0. 

On the other hand, if we calculate the effective cross section by replacing 
the convex-core potential with its spherical-core approximation mentioned in 
Section 2, then the result will give an upper bound. This replacement corre- 
sponds to the assumption that the effect of molecular rotation would vanish 
on the average. 

The coefficient of viscosity ~/ of a pure gas and the coefficient of self- 
diffusion D are given by 

[ 3 ;)2] 
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Fig, 5. Similar comparison as in Fig. 3, for carbon tetrafluoride. The core is a tetra- 
hedron defined by F atoms for curve (a) and 0.8 times this tetrabedron for curve (b). 

I , D = 8nmfU,~)  1 + 10 + 2~(2'2)/~ (1'1) \~57~,1, 

where m and n are the molecular mass and the number density of the mole- 
cules, respectively. The upper and lower bounds of these coefficients can be 
obtained by using the lower and upper bounds of the effective cross sections, 
respectively. 

Figures 6 and 7 show ~ and D for Ar, N2, and CO~ in dimensionless 
forms 

~7" = b2/3( m k T ) -  1/27, D* = b2/3nml /2(kT)-  I/2D 

as functions of T/TB. Here TB is the Boyle temperature and b is the molecular 
volume defined by (4). The lower-bound curves are almost in common to 
these molecules. Experimental results for viscosity <9-u) and for self- 
diffusion (12-1~ are in fact between the calculated upper and lower bounds. 

It should be noted that the experimental data of 7" for N2 and CO2 are 
closer to the theoretical lower bound, whereas those of D* lie halfway 
between the two bounds. This fact can be explained by considering that the 
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Fig. 6. Viscosi ty  in a d imens ion less  fo rm of  a rgon ,  n i t rogen,  and  ca rbon  dioxide.  
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Fig.  7. The  coefficient of  self-diffusion in a d imens ion less  form.  
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rep lacement  o f  the molecular  core by  the inscr ibed sphere is a bet ter  approx i -  
ma t ion  for  coll isions with large angles o f  deflection, and  such coll isions are  
more  effective for  diffusion than  for  viscosity. 

4. CONCLUSION 

F o r  equi l ibr ium proper t ies  of  gases, the relat ive size o f  the molecu la r  
core is essential,  as shown in Figs. 1 and  5; for  t r anspor t  proper t ies ,  the 
nonspher ica l  charac te r  of  the molecule  plays  an impor t an t  role, as e lucidated 

in Figs. 6 and  7. 
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